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SUMMARY

To develop the analysis and design methods for robust control of large space
structuie sampled data stochastic systems , the theory of multi-input, multi-output transfer
function matrix with the z-transformation is used. The analysis and design of robust control
of multivariable discrete-time feedback systems in the frequency domain are studied. The
singular value theory is used to establish robustness stability criterian for discrete-time sys-
tems in the presence of parameter ui'certainties or unmodelled dynamics in the frequency
domain. The robustness stability conditions for discrete-time systems with additive alteration,
and with multiplicative alteration are developed. The linear-quadratic-regulator(LQR) and
linear-quadratic-Gaussian(LQG) theory are used for studying the loop transfer recov-
ery(LTR) of discrete-time systems, and the robust LQG/LTR method has been extended
from the continuous-time systems to the discrete-time systems. It has been proven that the
LQG/LTR method is also valid for the LQG control of the discrete-time systems with the
filtering observer.

As an application of the LQG/LTR technique for discrete-time systems, the design
of reduced order optimal digital LQG controllers for the orbiting flexible shallow spherical
shell system is considered.. Simulations have certified the 12-dim. reduced order controllers
will be sufficient for the optimal LQG control of the orbiting shallow spherical shell system
in the presence of unmodelled dynamics. The performance of the 8-dim. reduced order
LQG controllers for the shell system is unacceptable. The 6-dim. reduced order controllers
for the shell system will result in the severe divergence of the transient responses.

The comparisons between the digital optimal LQG controller with the filtering
observer and predicting observer for the orbiting flexible shallow spherical shell system have
been made. Based on a comparison of the robustness recovery properties, the system per-
formance of the robust control system with the filtering observer has better transient response
characteristics than the LQG robustness control system with the predicting observer.
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PREFACE

This research symbolizes the work performed dui ing the period September 1989
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Introduction

The purpose of this research is to study and develop the analysis and design meth-
ods for robust control of the large space structure sampled data stochastic system with a
specific application to the orbiting flexible shallow spherical shell system.

It is well known that one of the most important breakthroughs in multi-input,
multi-out feedback system theory for the last decade is the devehlpment of the loop trans[er
recovery methodology for the linear quadratic Guanssian problem which is called LQG/
LTR. Unfortunately, the previous research works in this field are almost all for the continu-
ous-time system. Therefore, we must study and address the following problems before ap-
plying the LQG/LTR technique tu design discrete-time system robust controllers for the
orbiting large space structural s, 3tem.

(1) How to get the frequency response of the transfer function matrix for the
discrete-time systems supposing the discrete-time system model is given

in the time domain ?
(2) What is the robustness stability condition for the discrete-time system in

the frequency domain ?
(3) Is there loop transfer recovery for the discrete-time systems ? How to prove

it ?

!n this report, the first three Chapters will address the three problems. As an
application of the LQG/LTR technique for the discrete-time system, Chapter 4 studies the
design problem of the reduced order optimal digital LQG controller for the orbiting flexible
shallow spherical shell system.

Chapter 6 considers the differences between the digital optimal LQG controller
with filtering observer and predicting observer for the orbiting flexible shallow shell systen.
The general conclusions and suggested future direction will be given in Chapter 7.



1 The Analysis Method in the Frequency Domain for Discrete-time Systems

As we know, a lot of research about robust control has been completed for continuous-
time systems and the Laplace tran•,r9rmation method is its main analysis tool in the frequency
domain. What we want to do is to find the relationships between the transfer functions
of the continuous-time system and the discrete-tim,'2 system in the frequency domain , so
that the research results of the robustness problem for the continous-time system may he
applied to the discrete-time system.

I. I Discrete-time function and equivalent continous-time runction

It is supposed that g(t) is a continous-time function, g(kT) is the sampling function
ol g(t) at t=kT points (k=l,2,...), i.e. g(kT) may be looked at as the output of an ideal
impulse sampler for which the input is the cotitinous-time function, g(,).

g0) g(kT)

0 0
t k

g(t) g+(t)

Ideal Impulse Sai ipler

Fig. 1-i The discrete-time function and its equivalent continous-time function

The output of the ideal impulse sampler can he written mathematically as follows:
00 00

g( t ) Z- g ( t ) 8( t-kT )= g (kT) 6(t-k-r) (I-I)
k k

Then g+(t) can be called the equivalent continoti-timc function associated with the discrele-
time function g(kT) anl its Laplace transformation ik

2



M00 0O
G'( s )=L{ g+(t ) }I ] : (kT) 8( t-kT) e -(i t = g (kT) e-1 "1 (1-2)

k k

The Z-transformation of g(kT) is
00

G(z ) =Z{ g( kT )} = g( T ) z- (-3)

It is evident that the relationship between tne Laplace transformation of the equivalent conti-
nous-time function g÷(t) associated with the discrete-time function g(kT), and the Z-trans-
formation of the discrete-time function g(kT) is

G(z) = G+( s )I or- G'( s ) =G( z)I
s=(lnz)/ T z=esr (1-4)

It will be proven that this relationship (1-4) will still be true for the transfer functions be-
tween the discrete-time system and the equivalent continous-time system.

1.2 The relationship between the input and output for discrete-time systems

u(kT) g(n-l.) y(MT)

Fig. 1-2 The relati ,nship )etween input and
output fo the discrete-time system

It is supposed that the ir put and output for the discrete-time systems is u(kT), and
y(kT), respectively. The relationship between the input and output in the time domain is

n-1 00
y( nT) =Y g ((n-k)T) u(T k ) = g ((n-k)T) u(T k ) (1-5)

k k

( because g((n-k)T)=C when k > n-I

where g (nT ) is an impulse response function of the discrete-time system.

The Z-transformation of the output y(nT) is

3



00 00 00

n nl k

--x) g (roT) uzkT) z-((m÷k) (n-k=mn)

m k

00 00

= g(mT) z- m Z u(kT) z-k ( g(mT)=O , m<O )
m k

G( z ) U(z) (1-6)
where

00

G(z) = , g( mT) z-m= Z( g(mT)}

00

U(z) = F u( kT ) z-k = Zju(kT)}
k

1.3 The relationship between the input and output of the equivalent continuous-time
system

u+(t)_T y*0

Fig. 1-3 The relationship between input and output for
the equivalent continous-time sylem

It is assumed that the input and output for the equivalent c'ntinious-time system
is u+(t), and y÷(t), respectively.The relationship between the input ar.d output in the time
domain is:

00

y+(t) f g'( t - T ) u+( r ) d T (1-7)

0

where
00

u(t) = u( t ) 8-r(t) =t u( kT) 8( t - kT)
k

00

g+(t) t g( t ) .( t ) = g( kT) 8(t - kT)
k

4



00

y+(t) = y( t ) 8( = t y( kT) 6( t - kT)

k

C0

(t ) 8 ( t -kT) the impulse sampler
k

The Laplace transformation of (1-7) can be expressed as:

C0 00 00

s+ ) f y+( ) e dt = f f g+( t-ir ) u( )e-s' t dt dr
0 0 0

Sf g+( X )u( r) dX es(X+T)dr ( t--'r=X)

0 0

00 00

f g+( ) e"Xdx fu+( r ) e-Tdr (dg+(X)=O, X< 0)

0 0

=G+(s) U+( s) 1

where
00

-s ) f g-( x ) e-X d\, - L(g-(X)
0

U+(• s =f U+-( X. e-1)' d, = ,..{,,-'\))
0

Y(s ) = f Y+( X ) e-1X d = L{y(K)}

0

Because
00 00 00

G+( s f g (K) e-S" dX = f ,2 g( kT ) 8( X-KT) e-sX dX
S0 k

00 00 00

- X f g( kT ) e-'X 8(X-KT) dX = • g(kT) ekTs,
k 0 kI

then in a similar way one can obtain

5



00 00

U+(s) = f u+( t ) e-11 ct F=, u( kT) e-kr
0 k

00 00

YV(s) f y+(t) e dt y(kT) e-kTr

0 k

Based on the definition of the Z-transformation and comparison of (1-6) and (1-8).
we have

G+( s ) =G(z) [ = G(esr)
z=esT

U+( s ) =U(z) I = U(esJ) (1-8)
z=esT

+(s ) =Y(z)l Y(C S)
z=e.sT

Because

,(s+jnw )T =esT e JnO 'r=e sT

w, =27w/T T -- sampling pcriod

we have
G+( s +jnws) = G+( s ) (1-9)

ji,

wj2

The Primary
Strip or

Fig. 1-4 The Frequcncy Domain for Ihe Discrcic-lime System

6,



The following transfer function properties are limited to a particular frequency rangc. indi

ca(ed by the primary strip in Fig. 1-4

G+( jw) = G( e27TrjiW/s ) (w, / 2 < w < w, / 2) (1-10)

G(.j•w) = G(ej0) (-inr < 0 < 17) (1-11)

1.4 The relationship between the input-output for the equivalent continuous-time
system and the discrete-time system

Because the output of the equivalent continous-time systems is
0O

y'( t ) = L-'{ V+(s) } = L-'{G+(s) U+(s)} = f g'( t-7) U*(T) dT

0

0000O 00

= f F g(kT) 8( t- T-kT) Y, u(mT) B(T-mT) dr
0 k In

00 00 00

= Y, g(kT) u(mT) f 8( t-r-kT) 8( T-mT) dT
k rn 0

00 00

= F, g(kT) u(mT) 8( t-mT-kT)
k m

00 00

= Z g(kT) u(mTr) 8( t-nT) ( m+k=n )
k m

00 00

= F , g((n-m)T) u(mTn 5( t-nT) ( g((n-m)T)=O, n<m)
m n

00

-- y(nT) 8( t-nT)
n

where
00

y(nT) =X g ((n-n)T) u(mT)
m

It shows that th,• relationship between the output-input of the equivalent continuous-time
system is simila to that of the discrete-time system.



1.5 Summary

(1) If the transfer function of the discrete-time svstem is given by G(z), then the
transfer function of its equivalent continuous-time system. G+(s), can be expressed as fol-

lows:

G+(s) = G(z)t
z=e`sT

G+(ow) = O(ej'R) (-T < 0 < Tr

= G(e2"rW/Ws) (-s /2 < wo < tos/2 )

(2) The frequency properties for the discrete-time system can be described in
terms of frequncy properties for the equivalent continuous-time system.



2 Robustness Criterion in the Frequency Domain for Discrete-Time Systems
with Additive Alterations or with Multiplicative Alterations

2.1 The basic theorem of stability for MIMO linear feedback system

We will use the standard nota ion of input-output stability theory[7J

= some Banach space of function x : T - X with H .I
T = subset of the real numbers
X = finite dimensional vector space
e= { x PTx E S for all T (T }

(x(t) t T

Lm = space of rn-vector function on T with integrable Euclidean norm

1:Se le = identity operator
: "S S, is causal if PT9PT = PT9 for all T E T

A* = conjugate transpose of a complex matrix A

II PrgxI -PAx 2 IIII 0 II = Sup
A xIx2 E Se IIPrXI-PrX211 TET

PTXI X PTX2

We consider the feedback system depicted in Fig.2-1. Here the causal operator g:
L 2 em"L2em represents the plant plus .he any compensator that is used.

r e

Fig. 2-1 Basic MIMO Linear Feedback System

9



The basic feedback equation is

(1+ 0 )e= r (2-1)

and the basic stability question is whether ( J + § )- L 2em_. 2em exists, is causal, and
is a bounded operator in the sense that f] ( 3 + § )l < oo . We will assume that the
nominal system is stable. We are interested in whether the closed loop sysem retains these
properties when subject to additive ( g - Q + &§ ) or multiplicative ( g -- + g A, )
perturbations representing uncertainty in the dynamic behavior of the system. The following
theorem provide the basis for our analysis .[71

Theorem 1 A : S, -- Se be a linear causal operator, and suppose A-' exists, is causal
and IIA-'f1 < co . Then if A A: 9, -- -M, is a causal operator satisfying I[" All <

oo and if

IlI--'A4 ll < 1 (2-2)
A

it follows that (.+A, )- : A A Se exists, is causal and has

II( .A+A )'lA < co (2-3)

Theorem 2 : (Desoer and Vidyasager 1975 [41) Let the operator L : - L 2 ,m for
T = [0, co] be defined by

c0

(9x)(t) =f ( t - T )x(T) dT (2-4)
0

where the elements of the impulse response matrix g( t) are assumed absolutely integrable
on T . Then

"Al = IlI = Umax (2-5)
,L2em

where
amax = max max ar,(G(jtw))

W>O, 1'i•<m

and where ori(G(jw)) denotes the ith singular value of the transfer function matrix conre-
sponding to §.

I0



2.2 The stability conditions for the MIMO feedback system with additive alteration
or with multiplicative alteration

r et

Fig. 2-2 Nomial Feedback System

r e v+, >

Fig. 2--3 Feedback System with Additive Alteration

Fig. 2-4 Feedback System with Multiplicative Alteration

Ii



Where

Or L.em --- L2m the causal operator of the plant

c .L2m - L.2em the causal operator of the compensator

a,•a :. 2em LZem the causal operator of the additive alteration

~m : .2em -- ".2erm the causal operator of the multiplicative alteration

The coresponding transfer functions are Gp. Go, AGa, AGm. respectively.

2.2. 1 Feedback system with additive alteration

For the feedback system with additive alteration, Fig.2-3, we have

y=(Gp e + Ag. e) = (§p + 40.) e

e=r-QC y

i.e., ( I + Oc Op + Oc A )e

Applying the Theorem 1, if

II( K + 9cp )-'§cA• 8I < 1 (2-6)
A

then

(the + + OcA ga )- I exist and is bounded

Applying Theorem 2 to (2-6), and considering the relationship between the discrete-
time system and the equivalent continuous-time system, we have the following sufficient
condition for system stability:

I( +Gc(e 2WjW/Ws)Gp(e2Vqjo/(js))- IG,(e2ujw/ws) AG, (e2Trjc/ws) I)12 < I

Vw e [0, (•)•/2 ) (2-7)

Because

or(A) = 11 A 112 oa(A) = (II A- '2 )-1

we can obtain (2-8) from (2-7)

11 (I+GcGp)-'GcAGa 112 < 11 (I+GcGp)-'Gc 112 II &Ga 112 < 1 (2-8)

12



If G,-' exists, then

&I AGa lIh < ll(I+GcGp)-'Gc 1h-' = JI(Gc' + Gp)-1l2-i'

i.e.,

UtAGa(eZAJ(I/ws)] < -f[Gc- (e2"rrjc/ws) + Gp(e21TiW/t~s)]

VW E [0, w,/2) (2-9)

or we have from (2-8)

ll(l+GcGp)- 11n2 JlGc{I2 lAGalI2 < 1

i.e.,

2,rrjww0, al -Go (e21jW /ws) Gp(e 2"rTiW/Ws)]

o [A G a .(e2"riw /w s) < --

o.[Gc(ez~riw/ws) J

V co r= 0 , w.,) (2-10)

2.2.2 Feedback system with multiplicative alteration

From Fig.(2-4), we have

y = gp( 5 + a&m )e

e = r-Ocy

i.e.,
r- (+ c 9p + 9c p Agr )e

Applying Theorem 1, if

11 ( + Up),9 P m < 1 (2-11)
A

then

( + Gcgp + gcg&pA&m )-I exists and is bounded.

Applying Theorem 2 to (2-11) and considering the relationship between the discrete-time
system and the equivalent continuous-time system, we have the following sufficient condi-
tion for system stability:

13



II G(e1j/w)~ 21jA,)-G eno"s Gp (e 2Tir~W/s)&~C m (e2T'jW/cw) 1J2 <1

V W r= (O.wS/2) (2-12)

We may obtain the following relationship from (2- 12)

11 (I+GGp)-'GpGc&Gm)1I 2 < 11(1+GcGp)-'GcGpII 2 IiaGmIIZ < 1

0O1AGmI < 1/0uI(I+GcGp)-'GcGp1 (2-13)

If (GGp)-l exists, then

UIAGmI < 9[ (GGp)-l + I

i.e.,

UIAzGM(e2iWjO1O)I) < a[ (Gc(e211(I)/ws)Gp(e2,rrjw/o )) + 1 (2-14)

V W E [0, w,/2)

Because

(I+A)+(IA-i- 1) = (I+A)(I+A-1)

then

- l([+A)'11l2 < I

~ Qj-e-A/(1+II-eAJ)(2-15)

14



Considering (2-14) and (2-15), we obtain (2-16) if (GGp)-l does not exist

g"[ I+G, (e27Tj•/Ws) Gp (e2Trjcw/ws) ]

cT[AGm,(e 21TJW/Ws) I <

I + f[l+G,(e 2rj•/°•s)Gp(e 2TrjW/WS )]

< o'(GGp)-1 + I] v (0 E 10, w,/2) (2-16)
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3 The Linear-Quadratic-Gaussian(LQG)/Loop-Transfer-Reco' ery(LTR)

Methodology for the Discrete-lime System

3.1 Introduction

One of the most important breakthroughs in multi-input, multi-output feedback
system theory for the last decade is the development of the loop transfer recovery
methodology for the linear quadratic Gaussian problem, which is called LQG/LTR. The
people who developed this techniques at first art KwakernaakDoyle and Stein.[1,21

These are design techniques which allow the excellent robustness and sensitiity
properties of optimal state feedback schemes to b,, almost recovered by output feedback
schemes. Although this was the original motivation for the development of these tech-
niques, a wider and more important aspect of them is that they simplify the use of
LQG methodology, allowing practical feedback d signs to be attained with a reasonable
amount of effort.

Whereas output feedback design via LQG m thods usually requires the specification
of two pairs of matrices, namely a pair of cost-veighting matrices and a pair of noise
covariance matrices, the asymptotic recovery approach -equires only one of these pairs
to be designed. with the other pair being assigned values according to an automatic
procedure. This results in a tremendous reduction in the complexity of the design process.
Consequently, it is of great imr,,rtance to obtain an analogous procedure for discrete-
time systems. Unfortunately, the previous research work in this field is almost all for the
continuous--time system (except Maciejowski who is with Cambridge University, England'

The difficulty of the robustness recovery problem (or sensitivity recovery) for the discrete-
time system is that the filter gain (or control gain) for the discrete-time system is finite.
but the filter gain (or control gain) for the continuous-time system is infinite, so robustness
(or sensitivity) recovery can not be obtained by simple reduction similar to the case for
the continuous time system.

Maciejowski's work[1O]is only about the development of the sensitivity recovery of
LQG control wi h the filter observer for the discretc-tirne system. But with discrete-time
systems, the duality with the optimal control is only for the predicting observer,not for
the filter observer. Therefore, the robustness recovery for the discrete-time system can
not be obtained by simply using the duality principle.

Our research work is to develop techniques for ensuring robustness recovery for discrete-
time systems.The specific developments are as follows.

16



(K(k

C + u (k ) =BC(zl-AY 1 B

GCz)z~~z-(--fC (ABK) UjI J

x~k/k) T



ý + u (k) ___

Gy(k)

Fig.3-2 Block Diagram of the LQG Digital Control with Predicting Observer

where the compensator transfer function for (he predicting observer, G,,(z), is as follows
as:

G,,(z) = K,(zi-Ak)-'Kp

Ak = A - BK, -KPC



3.2 LQG/LTR Methodology for Discrete-time Systems

3.2. 1 The statement of the LQG problem

It is given that the system state equation is

x(k+ 1 )=Ax(k)+Bu(k)+Lt(k) (3-I)

The measurement equation of the system is

y(k)=Cx(k)+pLxhr(K) (3-2)

The control output equation is

y,(k)=Hx(k) (3-3)

It is assumed that the statistical properties are given by

E{•(K)g(K)r) = I E{1(K)r9(K)r} = [ (3-4)

then

E((Lg(k)) (Lk(k))T} = LLr = Q (3-5)

E(IX[Tq(K))(I[9(K))T) = .L21 = R (3-6)

where

L noise input matrix
p. parameter of measurement noise
H control output matrix
p parameter of control weigpting matrix

The objective of the LQG problem is to find a controller depending only on y(k), u(k)
(k=1.2,3 .... ), to minimize the performance index, J, where

00

I = E{ Z (xT (k)Qx(k) + u'(k)Au(k) 1 (3-7)
k=O

where

HTH =Q p21 = R (3-8)

It is well known that if the sys em (A B H) is controllable and observable and the system
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(A L C) is controllable and observable( the conditi -ns may be reduced to stabilizable and
detectable for the time-invariant system), then the L losed-loop system of the LQG optimal
controller is asymptotically stable. It should be pointed out that the free parameters of this
problem are L (noise input matrix), [L (intensity of the observational noise), H (control
output matrix), and p(control weighting factor in the performance index). In typical LQG
applications, these parameters are assigned a priori physical significance (e.g., process noise,
sensor noise, controlled variables, and control weights). Then the solutions for the LQG
problem are

u(k) = -K, x(k/k) ( For the filter observer) (3-9)

or

u(k) =-K, (k/k-t) (For the predict r observer) (3-10)

where

x(k/k)=,(k/k-1)+K((y(k)-y(k/k- 1)) (3-il)

•(k+1/k)=A•(k/k-1)+Bu(k)+Kp(y(k)-- (k/k-1)) (3-12)

9(k/k- 1)=CR (k/k- ) (3-13)

Kp=AKf (3-14)

Kt=pCT(CPeCT+R)-I (3-15)

Pe=APeA-TAPeCT (R+CPeCT)- I CPeAT +Q (3- 6)
and

K,=(A+BTPB)-IBPA (3-17)

P-ATPA-ArPB (t,+BTPB) - BTPA+o (3-1s8)

The block diagrams of the optimal LQG digital control with filter observer and with predict-
ing observer are shown in Fig. 3-land Fig. 3-2, respectively.

3.2.2 The development of the transfer function matrices

From (3-11) and (3-13), we have

•(k/k)=(I-KjC)^ (k/k-1)+Kfy(k) (3-19)

Considering (3-9). (3-12), and (3-13). w( have
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*(k+ 1/k)=(A-BK,) (I-KIC)*(k/k- I )+(A-BKc) Kfy(k) (3-20)

Let x-(z)=Z{('(k/k- 1 )}, x(z)=Z{^(k/k)}, y(z)=Z{y(k)} (3-21)

The Laplace transformation of (3-20) can be written as follows

x-(z)=fzl-(A-BK,) ([-KfC) J- ( 'X-BK,) Kfy(z) (3-22)

The Laplace transformation of (3-19) is

x(z)=(I-KfC) x-(z)+Kfy (z)

=(I-Kf) [zI-(A-BK,) (I-KfC)]1-1 (A-BKj) Kfy(z)+Kfy(z)

=f(I-KfC) [zI-(A-BK,) ([-KC) 1- (A-BK,)+I}Kfy(z) (3-23)

Because of

x (zl-yx) -t y+l=z(zl-xy) - (3-24)

then (3-23) can be written as follows:

x(z)=z[zl-(F-Kf, -) (A-BK,) [-1 Kry(z) (3-25)

Let G,.(z) be the transfer function of the plant;
G,(z) be the transfer unction of the compensator with filtering obserber;
Gcp(z) be the transfer function of the compensator with predicting observer.

Then the compensator transfer function for the filtering observer, G,(z), can be obtained
from(3-9) and (3-25) as:

Gc(z)=zKrzl-I(i-K1 C) (A-BK,) -'Kf (3-26,

The Gp(z) can be obtained from (3--l)and (3-2):

Gp(z)=C(zI-A)-'B (3-27)

The compensator iransfer function for the predicling observer, Gq,(z), can le obtained from
(3-10),(3-12),and(3-13) and is expressed

Gcp(z)=Kc(zi-Ak) 'Kt (3-28)

where
Ak=A-BK,-KpC (3-29)
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3.2.3 Robustness recovery and sensitivity recovery

It is well known that the multivariable linear-quadratic(LQ) optimal regulators have
impressive robustn,'ss properties, including guaranteed classical gain margins of -6 db to
+0o db and phase nargins of +600 in all channels. The result is only valid, however, for
the full-state care. If observer or Kalman filters are used in the implementation, no guaran-
teed robustness properties hold. The robustness recovery -neans that if the measurement
noise parameter, vx, approaches zero, then the loop transfur function of the LQG control
at the input loop-breaking point 1, will approach t ie loop transfer function of the LQR
control. The sensitivity recovery means that the loop transf 'r function of the LQG control
at the output loop-breaking point 2, will approach th , loop ransfer function of the Kalman
filter when the weighting parameter, p, approaches zero[. -31. W¢e will prove that these
results are also true for discrete-time systems.

The following facts can be found from Fig.3-1:

(a) The loop transfer function obtained by breaking the LQG loop at point, 1', is the LQR
loop transfer function Tt(z),i.e. ,K(zI-A)-YB:

(b) The loop transfer function obtained by breaking the LQG loop at point, 1, is GGP:

(c) The loop transfer function obtained by breaking the LQG loop at point, 2', is the
Kalman filter transfer function,T 3 (z), i.e., C(zI-A)-'Kp:

(d) The loop transfer function obtained by breaking the LQG loop at point, 2, is GpG,.

If the discrete-time system also has the properties of the loop transfer recovery similar
to the case for the continuous-time system, then the following relationships should be satis-
fied.

Limt GGp = K,(zI-A)-1 B (Robustness recover,') (3-30)
and p-- 0

Limt GPGC = C(zl-A)-'Kp (Sensitivity recovery) (3-31)
p-.- 0

Before beginning the formal proof, a lemma will be used:

Lemma (Shaked[1ll) :-If det(CB) ;' 0, and system (3-1)-(3-3) is of minimum phase,
then the Kalman filter gain KP determined by (3-14)-(3-16) will be
AB(CB)-' when the variance parameter of the observational noise, p.,
approaches to zero, i.e.,

Limt KP = AB(CB)-'
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This is the simplest case of Shaked's much more geneial result. Because K,=AKf
and null(A)=O, therefore Limt KI=B(CBK-l

Theorem: If the open loop transfej function of the system (3-1)-(3-3), has no (finite)
zero in { z : z > 1 } and det(CB) * 0. then

Limt GGP = K,(zi-A)-'B (3-32)
I.- 0

Proof:
Let eA(z) = GGp - K,(zl-A)-'B

Limt 6(z)=Limt GGp - K,(zi-A)-'B
V-0

=Limt z.K,[zl-(l-K() (A-BK,) ]-1KrC(zIA)-I BK,(zIA)-I B

=K,(Liint z~zI-(T-K(C)(A-BK,) -' KtC-I}(Iz-A,-'B
l.1-0

=Kc{z[zl-(I-S) (A-BK,)I-' S-l}(zl-A)-' B

=Kc{zlIz-(l-S)Ai-JS-I}(z[-A)-' B

=KcIzl-(I-S AJ 1 {zS-[zf-(I-S)A l}(zi-A)-' B

=K,[zl-(l-S A-' {z(S-I)+(I-S)A}(zI--A)-' B

=-KIzl-(I -S)A '(I-S) (zI-A) (zi-A)-' B

=-K¢ [zl-([-S)Al-' ([-Sl B

= 0 ( Since (i-S)B=O) (3-33)

where

S=I-B(C 8)-'C

The satisfaction at Eq.(3-32) means that there is the robustness recovery properticn
for the digital LQG control with filtering observer, hut there is no the robustness recoerv
properties for the digital LQG control with the predicting observer, because the G, and G,;,
is different, (3-32) can not bc proven by using Gcp instead of the G,

In similar way the (3-31) can be also proven, it indicate that the sensitivity recovery
is also true for the digital LQG; control ,ith the filtering observer.
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Note:

1. The condition, det(CB) # 0, ensures that Gp(z) has the maximum possible number
(n-m) of finite zeros, and the minimum possible number (m) of infinite zeros.
The perfect recovery obtained is only possible because the nonzero poles of G,
cancel the (n-m) finite zeros of Gp(z), and the m origin poles of G,(z) cancel

the m origin zeros introduced by the factor z in (3-26).

2. The mechanism by which the recovery is ichieved is essentially the same as in
the continuous-time system case : the compensator cancels the plant zeros and
possibly sorre of the stable poles, and inierts the controller (observer) zeros.
Clearly, this will fail if the plant has zeros outside the unit circle, since the
compensator, G,, guarantees internal stability.
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4 Design of Reduced Order Optimal Digital LQG Controller For the Orbiting
Flexible Shallow Spherical Shell System

4. 1. Introduction

Future proposed space miss ons would involve large inherently flexible systems
for use in communications, radio~netry, and in electronic orbital based mail systems.
The use of very long shallow dish-type structures to he employed as receivers/reflectors
for these missions has been suggested. In order to satisfy mission requirements, the pro-
posed LQG digital optimal control )f the shape and orientation for an orbiting shallow
spherical shell are also studied [1 1.

Since the mathematical systenm model is inherently of high order, a practical con-
troller has to be based on a reduced order design model. It is the purpose of this chapter
to study the design of the reduced order optimal digital controller for the orbiting shallow
spherical shell system.

One of the most important breakthroughs in multi-input, multi-output feedback
system theory for the last decade is the development of the loop transfer recovery meth-
odology for the linear quadratic Gaussian technique, which is called LQG/LTR [6-81.
These modern techniques are very useful in treating unmodeled dynamics and stochastic
uncertainties such as disturbances and sensor noises. As we know, these methods have
been developed only for the continuous-time system. However, in practice, observation-
al data used to verify the orientation and shape of large space flexible systems will,
in general, be collected on a sampled basis ( discrete-time data system). In order to
meet the requirements of design for the discrete-time data system, the loop transfer
recovery problem for the discrete-time system has been developed in our current re-
search work; It has been proven that the robustness recovery property for the LQG
problem is also true for the discrcte-time system if the open loop transfer function of
the system has no (finite) zeros outside the unit circle and det(CB)=O. where the C is
the observation matrix, and B is the control influence matrix.

The main purpose of this ch;apter is not to show how to develop this method theo-
retically in detail from the continu( us-time system to the discrete-time system( this will
appear in another paper), but to alply these results to the design of robust reduced-ord-
er LQG controllers for large spac( structural systems with sampled input data.

4.2 Mathematical Models

The mathematical model of an isotropic shallow flexible spherical shell in orbit
was developed in Refs [14-161. The resulting linearized equations of motion for the
rigid rotational and generic elastic modes were developed a:
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S- l.l.s - ( ) " /

+ 43 - (1-I)J = C/Jz)c(4-I)

to
0 -3,2 - (2l/Jy( 0)) , I(nn = Cy/Jy(°)Wc2

n--1

i + (n, 2 - 3)E, + (2lj(i)/Ml)6 = 3lt(i)/Mil + Ei/MilW. 2  (i = 1,2,3.... 10)

where

1' = Wet, ej =qi(t)/l (i=1,2,3,...)

The derivative in Eq.(4-1) is with respect to Tr.

= yaw, roll, and pitch angles, respectively, between the undeformed axes
of the shell and the axis of the orbiting local vertical /local horizontal system.

qi(t) = modal amplitude of the ith generic mode.
w: = orbital angular rate, constant for assun.cd cirzular orbit.
1= charateristic length (the base radius).
Mi = the ith modal mass.
J°),Jy (0o, JZ(°) = principal moments of inertia of the undeformed shell.
Cx. Cy, Cz = the components of external torques.
x, = coordinate of differential area on the surface above the base plane.
111, P,2, P.3 = (z (°-Jy(°))/J(°), (J,(°)-Jz(°))/Jy(0), (Jy())-Jx(°))/Jz(°), respectively.

11(i) = fXC(Oxidp

V

0,0n) = transverse component of the nth modal shape function.
wn = natural frequency of nth mode.
fin = ,n/w,

The mode shapes of the transverse vibratioi ; of a shallow spherical shell with
a completely free edge are given [131:

( = (n) { (lP+4/RDI Lpj4 )CpjgP + .jp(Lp, E) + I);jlp(.Lpi, 1)}cosp(3+I3o) (4-2)

where

p--the number of nodal diameters(meridians D = bending stiffness factor
j--the number of nodal circles R = radius of curvature of the

shell
Apj, Cpj, Dpj = the shape function coeflicient,; Jp = the Bessel functions of the

first kind
lpj = frequency parameter lp = modified Bessel furtions
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"ihhle 4-1 The first en natural frequencies of the shell

n p j W n (rad./sec)

1 2 0 1.027715063
2 0 I 1.027781054
3 1 1 1.028163456
4 2 1 1.029176311
5 0 2 1.029465999
6 1 2 1.031988029
7 2 2 1.036220825
8 0 3 1.036928081
9 1 3 1.044596445

10 2 3 1.055618524

It is assumed tiat 12 point actuators are used to control attitude and shape of
the shell system. The placerient of the 12 actuators is determined by using the degree
of controllability of the con rol system [131.The location of actuators on the shell are
shown in Fig.4-1 and the ollowing Table 2.

Table 4-2 Lo(ations of the 12 actuators on the shi How shell

Actuator T ocations of actuator ( 6,p ) Directions of (he jets
No. t ( fo fy0 (ZO

1 0.84 0 1 0 0
2 0.84 T ! 0 0
3 0.57 Tr/4 I 0 0
4 0.57 5r/4 1 0 0
5 0.40 31n/4 I 0 0
6 0.40 7n/4 i 0 0
7 0.28 TT/2 1 0 0
8 0.28 3Tr/2 I 0 0
9 1.00 rr/4 I -sintr/4 cosir/4

10 1.00 5Tr/4 I sin'r/4 -coswr/4

1I 1.00 3Tr/4 I -sin3w/4 cns3lT/4
12 1.00 7Tr/4 I sin3w/4 -cos3Tr/4

It is assumed that two Earth sensors and two Sun sensors are used to measure
the attitude angle between the local vertical/the vector of the Sun direction and the roll
axis, pitch axis of the shell, respectively. It is also assumed that 8 displacement sensors
are used to measure shell's transverse displacement parallel to the shell's yaw axis; the
displacement sensor are considered to becolocated with the actuators.
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Fig. 4-1 Orbiting Shallow Spherical Shell System



The state equations of the system ire as follows:

k = Acx + Bcu (4-3)

where

x = ( J,,,4,,$ ,e, ,,E 2. 2, 3 ... ,eoIo)r

Equations (3) ,an be discretized as follows:

X(k+l) = Ax(k) + Bu(k) (4-4)

where

A=exp(AT) , T=,;ampling time

T

B=f exp{A,(T-t) }Bcdt
0

The discretized observation equation is as follows:

y(k) = Cx(k) (4-5)

where

x(k) e Rn, u(k) E Rill. y E Rr;

A e Rn n, B e Rnlm, C E R

n=26, m=12, r=12 for the full order design model. It is assumed that the reduced
order design model may be divided into 4 cases. They are shown in Table 4-3.

ibble 4-3 Full order and reduced order design rnxiels

The order of design mrodel Modes, included in miodel n in r

case I full order rigid + l0 mlodes 26 12 12
case 2 1-dim reduced order rigid + 6 miodes 18 12 12
case 3 12-dim reduced order rigid + 3 modes 12 12 12
case 4 8-dim reduced order rigid + I modes 8 6 6
case 5 6-dim reduced order rigid only 6 4 4
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4.3 The Design or the Reduced Order LQG Controller and the Loop Transfpr
Recovery

4.3.1 Loop transfer recovery for the discrete-time system

It is assumed that the system state equation, measurement equation, control output
equation and performance index for the LQG problem are as follov s:

x(k+l) = Ax(k) + Bu(k) + L,(k) (4-6)

y(k) = Cx(k) + VJIr 1(k) (4-7)

y(k) = Hx(k) (4-8)

00

J = E Z [ xT (k) x (k) + uT(k) u(k) } (4-9)
k=0

where
E{(Lt(k)) (Lt(k) T } = LLT = Q E{g(k)(r(k)} = 1 (4-10)

E {(V..lr 1(k))(plr(k)) T} = IL2 I = R, E{rj(k)*n(k)T}= I (4-11)

= HT H, ý = p2 1 (4-12)

It is well known that if the system (A,B,H) is controllable and observable.
and the system (A,L,C) is controllable and observable ( the conditions may be reduced
to stabilizable and detectable for the time-invariant system), then the closed-loop sys-
tem of the LQG optimal controller is asymptotically stable.

The LQG control law for the filter observer is

u(k) = -Keg(k/k)
(4-13)

where

R(k/k) = R(k/k-1) + Kr (y(k)-4(k/k-l))
A(k+1/k) = A•(k/k-1) + Bu(k) + Kp (y(k) -9(k/k-1))
j(k/k-1) = CR(k/k-1)
KI) = AK1  filter gain matrix
Kr = PeC (CP'CT+R)-I
P,=APAT - APC•C(R+CPC')-CP,.A'+Q

and
KC= ( + BrPB)- BPA control gain matrix
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P - Arp, - ArPB(R+BTPB)-'BrPA+ Q

The diagram of the input and output in terms of the Z transformation is as
follows:

U(z) [r Z

U Z Gp z Y(z)

[Gc(z)

Fig4-2 Block diagram of the optimal LQG digital control with filtering observer

where

'1(z) = (zI-A)-l (4-14)

Gc(z) = zK,[zI-(I-Kf) (A-BKc) 1-JK (4-15)

Gp(z) = C(DB (4-16)

It is well known that the multivariable linear-quadratic optimal regulator(LQR)
has impressive robustness properties. But if the observer or Kalman filter is used in
the implementation, the robustness properties of the system will be degraded. The robust-
ness recovery means that if the measurement noise parameter, 1L, approaches zero, then
the loop transfer function of the LQG control at the input loop-breaking point, 1, will
approach the loop transfer function of the LQR control, i.e., robustness properties for
the LQG control will be the same as for the LQR control when the noise parameter,
wt, approaches zero.

In terms of mathematical no:.ations, this property can be stated as follows:

If the open-loop transfer function of system (6)-(8) has no (finite)zeros
in { z: lzl>l } and det(CB)XO, then

lir GcGp = Kc(DB (4-17)
V.---" 0.

where the Kc(DB is just the loop transfcr function for the LQR control.

In the same way, the sensitivity recovery can be also proven, i. e.,
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lim GpGc = C(DKp (4-18)
p---'-0

where the CIKP is just the loop transfer function for the Kalman filter.

It is evident that the robustness recovery properties for the LQG control may
be used in the design of the reduced order control ers, so that the controllers designed
based on the reduced order design models will I ave strong robustness properties.

4.3.2 The compromise between the performance and the robustness

It is well known that the basic requirements of a feedback system are:
(1) Stability: bounded output for all bound d disturbances and bounded

refer ence input;
(2) Performance: small errors in the presence of dist jrbances and reference input;
(3) Robustness: stability and performance m iintai ied in the presence of model

uncertainties.

In fact, the requirements (1) and (2) are in conflict with the requirement of (3).
In order to meet the requirement of (1) and (2), we shculd keep the sensitivity func-
tion[S8

S(z) = (I + Gp(z)G,(z))-l (4-19)

as small as possible for all frequencies z=exp{j&. T}, ( -w,/2 < w <w,/2 , T=2rr/wt).
If the requirement of (3) has to be met, we shouhl keep the complementary sensitivity
function T(z),

T(z) = Gp(z)Gc(z)(I+Gp(z)Gc(z))-Y (4-20)

as small as possible for all frequencies z=exp{jwlo}, ( -ws/2 < wo •<ow/2 , T=2/t/ws)
However, since

S(z) +T(z) = I (4-2 1)

they cannot be made small simultaneously. Rather we must trade off the size of one
function against the size of the other in accordance with the relative importance of distur-
bance/command power and model uncertainty at each frequency.

Tradeoff between transfer functions can be formalized by posing them as func-
tion-space optimization problems[8]. The developments in [8] are for the continuous-
time system; parallel to discussions in [81, the following developments can be obtained
for the discrete-time systems.

The first thing needed for the optimization problem is to chose a convenient criteri-
on of smallness. Consider
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(TIMI 2 = Xinax[MlM"I < Tr(MM"I

This shows that a matrix M will be small if Tr(MM"I is small. Using this latter measure
for the two matrices, S(eji-T) and T(ej$T), adding weights W(ejiT) to trade one against
the other, and integrating over the frequency range results in the following optimization
problem.

Given the plant Gp(z), weight W(z), and sensitivity and complementary sensitivity
functions defined by (4-19) and (4-20), respectively, find a stabilizing compensator
G,(z) to minimize

w,/l2 w,/12

J f {Tr[SWW"S" + TrITTHl}dw = f TrIMM"lIdw (4-22)
-w,/J2 -ws/2

where
M=M(eCir) = [S(ej-r) W(eij)T), T(ejaT)]

In mathematical terms, this represents an H2-optimization problem[]7]. Using this
approach similar to that in [81, it can be proven that the LQG problem for the discrete-
time system defined by (4-6)-(4-12) may be converted into th.: equivalent H2-optimi-
zation problem, i.e., the performance index, (4-9), can be con, erted into the following
formulation:

w,•/2

Jiqg = (T'27r)j TrrP(eiwl")P'4(eJi~r) )dw (T=21'r/w,) (4-23)
-w,./2

where

P(eJ•r)T = (H (L-H, BG,(I+GGc)-'Ct(IL -ýLH(DBG,(I+GpGj)-I

-pG,(I+GPG,) -C•)L -p.GJ(I+GPG) (4-24)

Comparing (4-22) and (4-23), it is now apparent that the only remaining step
needed to solve (4-.'2) is to finc free parameters for (4-24) such that P(z) reduces
to M(z).It is easy to verify that t.te following choices provide the desired result.
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Choose L and It such that (Sensitivity Recovery)

CODL/p = W(z) (4-25a)
and let

H=C and P - 0 (4-25b)

then

((I+GpG,)-' W -GPG,(I+GPG,)-l)

P(z)--- P (4-25c)

0

= -T)

Note that for each nonzero value of p, the LQG solution for these choices produces
an appropriate stabilizing controller which is H2-optimal for (4-23). Moreover, since
(4-23) converges to (4-22), a sequence of decreasing p--values produces a sequence
of controllers which optimizes (4-22) in the limit.

It is also easy to verify that the following alternative to (4-25) produces another
useful transfer function tradeoff:

Choose H and p such that (Robustness Recovery)

HDB/p = W(z) (4-26a)
and let

L=B and -- -0 (4-2611)
Then

W W(I+GG 0-10
(z) P(4-26c)P~) -',- 1 -(I+GcG,))-'GcGr 0

-T- 0
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These choices accomplish an H2-tradeoff butween the sensitivity and complementary
sensitivity functions at the input loop-breaking point 1 of Fig.4-1 instead of at the
output. Both choices (4-25) and (4-26), will be referred to as LQG/LTR.

Eq.(4-17) (or (4-18)) shows that the optimal loop transfer function matrix of
a minimum-phase H2-problem (4-22) corresponds to the loop transfer function of
the LQR(or Kalman filter)problem with its loop breaking point 1(or 2). Moreover.
Eq.(4-17) (or (4-18)) shows that the sequence of LQG solutions generated by
(4-26)(or (4-25)) converges to tlis function( "recovers" this function) as the design
parameter p.(or p) becomes small. These results may be listed as follows:

Table 4-4 Robustn ,ss (Sensitivity) Recovery

Robustness Recovery Sensitivity Recovery

Let L = B, r > m Let H=C, r,<m

Suppose C(zI-A)-'L is min. phase Suppose H(z[-A)-'B is min. phase
When I•.- 0 When p --- 0

then Ti(z) -- K,(zI-A)-'B then T 2 (z) - C(zl-A)-1 Kf

Relationship between LQ regulator Relationship 'ietween Kalman filter
parameter and sensitivity weighting parameter an-I sensitivity weighting

H(zl-A)-1B/p = W(z) C(zl-A) tL/pL = W(z)

A, B, H, p : LQ - regulator parameters A. L, C, IL : Kalman filter parameters

W(z) Sensitivity weighting W(z) : Sensitivity weighting

Where

XeRn, UeR m , YERr

TI(z)=Gj(z)G,(z): The transfer function at the input loop-breaking point 1
T2(z)=Gp(z)G,(z): The transfer function at the output loop-breaking point 2
K,(zi-A)-'B : LQR loop transfer function
C(zl-A)-'Kf : Kalman filtei loop transfer function

The significance of these result is that we can design LQG loop transfer functions
on a full-state feedback basis ancl then approximate them adequately with a recovery
procedure. For the point 1, 'he fu I-state design must be done with the LQR equadions
and recovery with the Kalmn filtcr, while for point 2, full-state design must be done
with Kalman filter equation• and ecovery with LQR equations.

The above properties suggest a two-step approach to the H2-optimal problem
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design:
Step 1: Design a LQ-regulator (or Kalman filter)via (4-26a)(or (4-25a)), with

desirable sensitivity, complemnentarv sensitivity, and loop transfer func
tion.

Step 2: Design a sequence of a Kalman filler(or LQ-regulators), via (4-26b)
(or(4-25b)), to approximate the f,inction in step I to whatever
robustness(or accuracy) is needed

Both of these steps are easy design tasks The I irst is easy because the LQ-regula-
tor(or Kalman filter), sensitivity, complementary se;isitivity. and loop transfer function
are explicity related to the chosen weights W(eji"r), and the second is easy because it
involves only repeated solutions of the algebraic R'ccati equations. This follows hy
inspection of S and T.

4.3.3 The design or reduced order optimal digital LQG controllers

It is our expectation that the reduced order controllers should maintain as much
robustness as possible when the performance of the system satisfies the design require-
ments. Therfore, a two-step robustness recovery procedure will be applied as follows:

(I) Design LQ-regulators via (4-26a) for the full order system For all frequen-
cies where the weights W(eiIT)=H(D(eiWT)B/p are much larger than unity, the LQ-regu-
lator sensitivity, complementary sensitivity, and loop transfer function have the following
properties.

ori [(I+KcD(ei(OT)B)-IJ = I/oi [W(eiwT)] (4-27)

UTi (Kc, (e&wT) B(I+Kc(,(eiw")B)-IJ = 1 (4-28)

a'1 [K,((eJ&r)BI = cTi IW(eilT)I (4-29)

for each singular value, o'i. Therefore, the accuracy may be improvcd by properly in-
creasing the weight. W(z), The adjustible parameters are H and p Ior this case; if H
has been selected, the accuracy may he improved by proper reduction of the parameter.
p. The preliminary design of the LQ-regulator just invoices the selection of the parame-
ter, p, in this case.

(2) Design a sequence of Kalman filters via (4-26h) for the full order system
Let L=B, and Ix -- 0, to approximate the function in step I to whatever robustness

is needed. The preliminary design of the Kalman filter involves just the selection of
the parameter, ýI.

(3) Simulations of LQG optimal digital control for various reduced order control-
lers for the selected parameter pair (p,liL). The simulations will be used for verifyingz
which of the available reduced order controllers is best.
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4.4 Numerical Results

It is assumed that the plant model of the orbiting shallow spherical shell includes
3 rigid modes,3 axisymmetric modes, t meridional mode, 6 combined modes, i.e..
26 dimensions in all. The controllers may be divided into 5 cases:

Case I: full order controllers
Case 2 reduced order 18-dim controllers
Case 3 reduced order 12-dim controllers
Case 4 : reduced order 8-dim controllers
Case 5 : reduced order 6-dim controllers

The parameters for the simulations are selected as follows:
Sampling time: 5 seconds
System noise : a, = 10-3 (rad.)
Observational noise : oro = 10-2 (meter)

Physical and geometrical pirametcrs of the shell:
mass = 10,000 kg.
the base radius of shell = 1 )0 meters
the height of shell = 1 metei
radius of curvature for shell = 5000 meters
wall thickness of shell = 0.0 1 meter

Initial conditions for all simulati(ns:
WU(0)=4,(0)=-(0)=0.2 rad.
4(0)=$(O)=6(0)=0.02 rad./s.-c
q 1 (0)=(I2(0)=q3(0)=... =q6(0 =5 meters
q7(0)=q8(0)=... =qjo(0)=0
ý1)4, o=. =4,0(0)=0

(I) The design of the desirable LQ regulators

The free parameters for the regulators are H and p. If we let H=C, the p becomes
the only free parameter. The weighting function and Eq. (27) indicate that with p proper-
ly reduced, the loop's errors in the presence of commands and disturbances can be
made small. But p cannot be too small; otherwise the errors in the presence of observa-
tional noise will increase with the reduction of p,and the robustness will be degraded,
often resulting in divergence of the transient responses for the reduced order controllers.
Fig.4-3 certifies this point and shows that p=t is a proper value.

(2) The design of the desirable Kalman filler

By means of the procedures for the robustness recovery, as we know, the robust-
ness of the LQG control system willbe increased when p. is reduced; but the p. cannot
be too small, otherwise the accuracy of ihe LQG control system will be degraded. The
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design of the contiol system involves a compromise between robustness and accuracy.
Fig,4-4 certifies this point. The transient responses show that the proper p. values are
0.1 or 0.01

(3) The determination of the reduced order LQG controllers in the presence
or unmodeled dynamic uncertainties.

Simulations have been conducted for the LQG control ( plant is 26 dimensions)
with 4 kinds of reduced order controllers( 18-dim, 12-dim, 8-dim.and 6-dim) for
the orbiting shallow spherical shell, where the parameters, p and p. are set as I and
0. 1, respectively. Fig.4-5 shows that the robustness and performance of the
reduced order LQG controllers are worse than that of the full order controllers; the
12-dim reduced order controller is sufficient for handling the unmodeled dynamics
of the shallow spherical shell system; the 6-dim and 8-dim reduced order controllers
cannot satisfy the requirement of the optimal control of the shallow shell system; the
6-dim controller, which is based only on the rigid modes, will result in severe divergence
for the transient responses of the shallow shell system.

4.5 Summary

(1) The properties of robustness recovery(sensitivit -recovery) for discrete-time
systems are studied, and may be used for the design of educed order optimal LQG
digital controllers forthe shallow spherical shell system. The design of the control system,
in fact, is a compromise between robustness and performance of the control system
after the stability of the control system is satisfied. If L=B and H--C, the robustness
and performance of the control system only depend on two parameters: p(sensitivity)
and lt(robustnesst). Therefore, the design of the LQG control system involves th,• selec-
tion of the proper parameter pair (p,p.), so that the system is stable and the robustness
and performance satisfy the design requirements.

(2) If the robustness recovery is used for increasing the robustness of the control
system, in general, the p. value should be as small as possible; but considering the per-
formance of the system, the p., cannot be selected too small, otherwise the performance
of the system will be degraded. In general, the performance of the reduced order control-
lers is worse than that of the full order contiollers.

(3) Simulations have certified the I 2-dim reduced order controller will be
sufficient for the optimal LQG control of the shallow spherical shell system in the pres-
ence of unmodeled dynamics. The performance of the 8-dim reduced order LQG con-
trollers for the shell system is unacceptable. The 6-dim reduced order controllers for
the shell system will result in the severe divergence of the transient responses.
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5 The Comparison Between the Digital Optimal LQG Controller with the
Filtering observer and Predicting Observer for the Orbiting Flexible Shallow
Spherical Shell System

As we know, there are two kinds of different LQG controllers for the discrete-time
system: one of them is shown Fig.3-1, in which the state being fed into the controller
is the filtered estimate of the state variable, so it called the digital LQG controller with
filtering observer; another is shown Fig. 3-2, in which the state being fed into the control-
ler is the predicted estimate of the state variable, so it is called the digital LQG controller
with the predicting observer.

It was shown in Chapter 3 that there is a robustness recovery property for the
digital LQG controller with filtering observer, but there is no corresponding property
for the digital LQG controller with the predicting observer. The proof is given in detail
in Chapter 3. In this thapter, the comparison between the transient responses of the
LQG digital control with filtering observer and predicting observer will be made by
simulations of the LQG digital control for the orbiting shallow spherical shell sys-
tem(Fig. 4-1).

It is assumed that the plant model of the orbiting shallow spherical shell includes
3 rigid modes, 3 axisymmetric modes, 1 meridional mode, 6 combined modes, i.e.,
26 dimensions ir all. The controllers may be divided into 3 cases:

Case 1 : full order controllers (3 rigid modes + 10 flexible modes)
Case 2 : 18-dim reduced order controllers(3 rigid modes + 6 flexible modes)
Case 3 : 12-dim reduced order controllers(3 rigid modes + 3 flexible modes)

The physical and geometrical parameters of the shell:
mass = 10,000 kg.
the base radius of shell = 100 meters
the height of shell = 1 meter
the radius of curvature for shell = 5000 meters
wall thickness of shell = 0.01 meter

The parameters for the simulations are selected as follows:
sampling time: 5 seconds
system noies: or, = 10-3 (rad.)
observational noise: or, = 10-2 (meter)

Initial conditions for all simulations:
*(0)=4ý(0)=O(0)=0.2 rad.
4(0)=$(0)=0(0)=0.02 rad./sec.
qj(0)=q2(0)=q3(0)=...=q6(0) = 5 meters
q7(0)=q8(0)=... =qo(0))=0.0
41(0)=4(0)= ... =, 10 (0)
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Based on the development in the Chapter 4, the relationship between the robustness
recovery and the accuracy of the control system may be listed as follows:

Table 5-1 Robustness recovery and system accuracy

Robustness Recovery System Accuracy

Let L = B, r >, m Sensitivity function

Suppose CTL is min. phase S(z) = (l+Tj(z))-'

Sensitivity weighting
where $ = (zl-A)-' W(z) = HDB/p

When --- 0 when lL -- 0

then TX (z) -- K4'B then o'i(S(z))-oi(( t+KOB)-')=l/'i(W)

where

Tl(z)=G,(z)Gp(z) : the transfer function of the input loop-breaking point I
KCB : LQR loop transfer cunction

In the design of LQG robust control systems, the free parameters are, p, the control
weighting factor in perform~ince index ,rnd, Ip, the measurement noise parameter. As
shown in Table 5-!, the reduction of IL will increase the system robustness; the reduction
of p will reduce the cri(S(z)). S(z) is the sensitivity function of the system, the reduction
of cri(S) means that the accuracy of the control system will he improved.

5. 1 Comparison of transient responses between the full order LQG digital
controller with predicting obseri er and filtering observer

In order to study and compare the influence of ihe sensitivity parameter, p. and
robustness parameter, V., on the transient response of the digital full order LQG control-
ler with predicting observer and filtering observer, the parameters p, and V. are varied
in the combination shown in Table 5-2 and Table 5-3 for the simulations:

43



Table 5-2 The parameter pair (p,ix) in Fig. 5-1

Case p V. Predicting observer Filtering observer

1-1 1 1 Fig.5-1-1 Fig.5-1-2

1-2 1 0.1 Fig.5-1-3 Fig.5-1-4

1-3 1 0.01 Fig.5-1-5 Fig.5-1-6

Table 5-3 The parameter pair (p,p.) in Fig. 5-2

Case p p. Predicting observer Filtering observer

1-4 0.1 1 Fig.5-2-1 Fig.5-2-2

1-5 0.1 0.1 Fig.5-2-3 Fig.5-2-4

1-6 0.1 0.01 Fig.5-2-5 Fig.5-2-6

The following two points are shown in Fig.5-1 and Fig.5-2:

t Fig.5-1 shows that the transient response of the digital full order LQG control-
ler with filtering observer for the orbiting shallow spherical shell system is more sensitive
to the reduction of the parameter, l., than that of the digital full order LQG controller
with the predicting observer. The transient performance of the system with filtering ob-
server is better than that of the system with predicting observer for the same parameter
pair (p,IX).

2 Fig.5-2 shows that the decay of the transient response of the system will in-
crease strongly with the reduction of the sensitivity parameter, p; i.e., the time of the
transient process of system will be shortened whci the value of p is reduced. In this
case the phenomenon of the data saturatim will ilso appear earlier in the response,
but the accuracy of the system with filtering obserxcr is still better than the system with
predicting observer.

5.2 Comparison of transient responses between the 18-dim reduced order LQG
digital controller with predicting observer and filtering observer

In order to study and compare the influence of the sensitivity parameter. p, and
robustness parameter, p., on the transient response of the digital 18-dim reduced order
LQG controller with predicting observer and filtering observer, the parameters p, and
p. are varied in the combinations shown in the Tables 5-4 and 5-5 for the simulations:
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Table 5-4 The parameter pair (p,p.) in Fig. 5-3

Case p p. Predicting observer Filtering observer

2-1 1 1 Fig.5-3-1 Fig.5-3-2

2-2 1 0.1 Fig. 5-3-3 Fig.5-3-4

2-3 1 0.01 Fig.5-3-5 Fig.5-3-6

Table 5-5 The parameter pair (p,p.) in Fig. 5-4

Case p p. Predicting observer Filtering observer

2-4 0.1 1 Fig.5-4-1 Fig.5-4-2

2-5 0.1 0.1 Fig.5-4-3 Fig.5-4-4

2-6 0.1 0.01 Fig. 5-4-5 Fig. 5-4-6

The following points are shown in Fig.5-3, and Fig.5-4:

1 Fig.5-3 shows that the 18-dim. reduced order LQG digital controller for the
both types of observer are stible for the parameters p=1 and p.=l, 0.1, 0.01; The tran-
sient response of the system will be improved when the value of the parameter, V, is
decreased from I to 0.01. The performance of the system with the filtering observer
is better than that of the system with the predicting observer when the value of the param-
eter, p., is reduced.

2 Fig.5-4 shows that the transient response of the system with the filtering
(,bserver for the orbiting shallow ,pherical shell system is still stable when the values
of the parameter, p., is reduced, but the transient response of the system with the predict-
ing observer is not stable for the parameters p=0. 1, p.=0.01. This result is due to the
fact that the sensitivity of the system will be increased when the value of the parameters,
p, is decreased from 1 to 0. 1. This indicates that the robustness of the system is reduced
with the reduction of the parameter, p. Therefore, the transient response of the system
with predicting observer will result in divergence since the robustness of system is not
sufficient to cover the error of the unmodelled dynamics; but the transient response
of the system with the filtering observ r is still stable due to the robustness recovery
property of the system with filtering observer.

5.3 Comparison or transient responses between the 12-dim reduced order LQG
digital controller with predicting observer and filtering observer

In order to study and compare the influence of the sensitivity parameter, p, and
the robustness parameter, p., on the transient response of the digital 12-dim. reduced
order LQG controller with the predicting observer and filtering observer, the parameters,
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p, and p. are combined indicated in Tables 5-6 and 5-7 for the simulations:

Table 5-6 The parameter pair (p,V.) in Fig. 5-5

Case p V. Predicting observer Filtering observer

3-1 1 1 Fig.5-5-1 Fig.5-5-2

3-2 1 0.1 Fig.5-5-3 Fig. 5-5-4

3-3 1 0.01 Fig.5-5-5 Fig. 5-5-6

Table 5-7 The parameter pair (p,tp in Fig. 5-6

Case p V. Predicting observer Filtering observer

3-4 0.1 1 Fig.5-6-1 Fig.5-6-2

3-5 0.1 0.1 Fig.5-6-3 Fig. 5-6-4

3-6 0.1 0.01 Fig. 5-6-5 Fig.5-6-6

The following points are shown in the Fig 5-5 and Fig. 5-6:

1 Fig. 5-5 shows that the 12-dim. reduced order LQG digital controller for
both observers are stable for p = 1, and l.=1,0. 1,0.0 1. The transient response of the
system will be improved when the value of p. decreases from I to 0.01. The performance
of the system with the filtering observer is better than that of the system with the predicting
observer when the value of p. is reduced.

2 Fig. 5-5 and Fig. 5-6 show that transient response of the systems with predict-
ing observer and filtering observer are not stable. 3ecause the system robustness is re-
duced when the value of p is reduced from I to 0).01, and the error of unmodelled
dynamics for the 12-dim. reduced order controller is greater than that for the 18-dim.
reduced order controller, the robustness of these systems is not sufficient to overcome
the unmodelled dynamics. Therefore, the divergence of the system's transient response
results for all parameter pairs (p,p.) in Fig. 5-6.

What we should point out is that the divergence of the system with the filtering
observer is slower than that of the system with the predicting observer.
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6 General Conclusions and Suggested Future Direction

6.1 General conclusions

In order to develop the analysis and design methods for robustness control of large
space structure sampled data stochastic systems with a specific application to the orbiting
flexible shallow spherical system, the following problems have been studied and the
conclusions we have obtained are as follows:

(1) The theory of multi-input, multi-output(MIMO) transfer function matrices
in the z transformation may be used for the analysis and design in the frequency domain
for the discrete-time system. The frequency response of the transfer function matrix
for the discrete-time system can be obtained by means of the frequency response of
the transfer function matrix for the equivalent continous-time system.

(2) The robustness criteria in the frequency domain for discrete-time systems
have been developed. The stability conditions for MIMO discrete-time feedback system
with additive alteration are (2-9) or (2-10); The stability conditions for MIMO dis-
crete-time feedback with multiplicative alteration are (2-14) or (2-16).

(3) One of the most important breakthroughs in multi-input, multi-output feed-
back system theory for the last decade is the development of the loop transfer recovery
methodology for the continous-time linear quadractic Gaussian problem, which is called
LQG/LTR. The LQG/LTR technique has been extended from the continous-time sys-
tem to the discrete-time system in this report. It is proven that the robustness (sensitivity)
recovery property is also valid for the LQG digital controller with the filtering observer,
but it is not valid for the LQG digital controller with the predicting observer.

(4) As an application of the LQG/LTR technique for discrete-time systems to
large space structural systems, the LQG/LTR technique of the discrete-time systems has
been used to design the reduced order optimal digital LQG controller for the orbiting
flexible shallow spherical shell system. The research results indicate that the 12-dim
reduced order controller will be sufficient for the optimal LQG control of the shallow
spherical shell system in the presence of unmodelled dynarrics.

(5) The comparisons between the digital optimal LQG controller with the filtering
observer and predicting observer for the orbiting flexible shallow spherical shell system
have been made. The robustness recovery property for the digital LQG controller with
filtering observer has been certified by the simulations. The iimulations indicate that
the transient response of the digital LQG control system with the filtering observer or
with the predicting observer, in general, depends on the robustness parameter, p., and
sensitivity parameter, p. The best combination of the parametcrs p and p., will depend
on the compromise between the accuracy and robustness. C( nsidering the robustness
recovery property, the s) stem performance of the robust control system with the filtering
observer will be better than that of the LQG robust control system with the predicting
observer.
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6.2 The suggested future directions

(1) Loop transfer recovery for nonminimum phase plants for discrete-time
systems

The requirement of minimum phase plant (i.e., the transfer function of the plant
has no (finite) zero outside the unit circle) for the recovery procedure is critical. Since
there are some plants which are minimum phase systems in practice, it would be desir-
able to have a methodology for incorporating limitations due to non-minimum phase
zeros into the LTR procedure. It is especially more desirable for discrete-time systems.
since the standard sampling process is known to introduce zeros, some of which some-
time lie outside the unit circle.

(2) Synthesis and design of reduced order LQG/LTR optimal digital
controllers using constrained optimization techniques

It is well known that the basic requirements of a feedback system are better per-
formance(small error in the presence of disturbances and reference input) and robust-
ness(stability and performance maintained in the presence of model uncertainties). In
fact, the two parts of these basic requirements are in conflict with each other. As far
as the LQG/LTR method is concerned, the conflict is reflected in the selections of the
robustness parameter at.d sensitivity parameter 8]. Therefore, we may convert the prob-
lem of reduced order LQG/LTR controller design into the constrained optimization
problem. This procedure minimizes a linear quadratic Gaussian(LQG) type cost func-
tion while trying to satisfy a set of constraints on the responses and stability margins.
Although a linear LQG cost function was minimized by updating the free parameters
of the control law, while satisfying a ;et of constraints on the design loads, responses,
and stability margin[18J, our attention will be focused on the design and synthesis of
the reduced order LQG/LTR optimal digital controller for discrete-time systems, using
only a small number of design pararmieters specifically associated with robustness and
sensitivity. As an application, this method will lie applied to the design of digital reduced
order LQG/LTR controllers for the orbiting shallw spherical shell system.

(3) The synthesis and design of the robust digital optimal output feedback
reduced order controllers using constrained optimization

Since the mathematical system model is inherently of high order for large space
structural systems and because of the practical psýibility of on-board computational
implementation, it is desirable to have methods avaible for the design of low-order
controllers for high-order plants. Such methods can lie broadly divided into two classes:
(a) direct method: in which the parameters defining a low-order controller are com-
puted by some optimization or other procedure; (b) indirect method: in which a high-
order controller is first found and then a procedure used to simplify, or a low-order
plant first is found by some criterion, and then a low-order controller based on the
simplified low-order plant is designed. In general, the direct method is better than the
indirect method in meeting the requirement of the designer. The design method for the
robust digital optimal output feedback reduced order controller using constrained opti-
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mization is just the direct design method for the low-order controller. Therefore, it is
very useful to study and develop the design method for the robust digital optimal output
feedback reduced order controller using constrained optimizatkin.
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